skip to main content


Search for: All records

Creators/Authors contains: "Arora, Aashay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biscarat, C. ; Campana, S. ; Hegner, B. ; Roiser, S. ; Rovelli, C.I. ; Stewart, G.A. (Ed.)
    The High Luminosity Large Hadron Collider provides a data challenge. The amount of data recorded from the experiments and transported to hundreds of sites will see a thirty fold increase in annual data volume. A systematic approach to contrast the performance of different Third Party Copy (TPC) transfer protocols arises. Two contenders, XRootD-HTTPS and the GridFTP are evaluated in their performance for transferring files from one server to another over 100Gbps interfaces. The benchmarking is done by scheduling pods on the Pacific Research Platform Kubernetes cluster to ensure reproducible and repeatable results. This opens a future pathway for network testing of any TPC transfer protocol. 
    more » « less
  2. Abstract

    Cementitious binders amenable to extrusion‐based 3D printing are formulated by tailoring the fresh microstructure through the use of fine limestone powder or a combination of limestone powder and microsilica or metakaolin. Mixtures are proportioned with and without a superplasticizer to enable different particle packings at similar printability levels. A simple microstructural parameter, which implicitly accounts for the solid volume and inverse square dependence of particle size on yield stress can be used to select preliminary material combinations for printable binders. The influence of composition/microstructure on the response of pastes to extension or squeezing are also brought out. Extrusion rheology is used in conjunction with a phenomenological model to better understand the properties of significance in extrusion‐based printing of cementitious materials. The extrusion yield stress and die wall slip shear stress extracted from the model enables an understanding of their relationships with the fresh paste microstructure, which are crucial in selecting binders, extrusion geometry, and processing parameters for 3D printing.

     
    more » « less